Serket is a library for constructing large-scale models and estimating their parameters via the connection of the modules. You can use the following probabilistic models and neural network models:
Serket makes it possible to construct large-scale models by connecting these modules.
The concept of Serket is described in the following paper:
@article{nakamura2017serket,
title={SERKET: An Architecture For Connecting Stochastic Models to Realize a Large-Scale Cognitive Model},
author={Nakamura, Tomoaki and Nagai, Takayuki and Taniguchi, Tadahiro},
journal={Frontiers in Neurorobotics},
volume={12},
year={2017}}
We have also published a Japanese paper describing some of the modules:
國安瞭,中村友昭,青木達哉,谷口彰,尾崎僚,伊志嶺朝良,横山裕樹,小椋忠志,長井隆行,谷口忠大,”確率モデルの統合による大規模なモデルの実現 ~VAE, GMM, HMM, MLDAの統合モデルの実装と評価~”,情報論的学習理論ワークショップ,T-34,Nov. 2018
國安瞭,中村友昭,長井隆行,谷口忠大,”確率モデルの統合によるマルチモーダル学習モデルの構築”,人工知能学会全国大会,1L4-J-11-02,Jun. 2019